

Radiation Fundamentals

Radiation Safety Training Module 1

TT WESTERN KENTUCKY UNIVERSITY

- Radioactivity
 - Radioactivity is the process of unstable (or radioactive) atoms becoming stable.
 - This is done by emitting radiation.
 - This process over a period of time is referred to as radioactive decay.
- Radioactive material
 - Radioactive material is any material containing unstable atoms that emit radiation.

Radiation Safety Training

TT WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 2

- Radioactive Half-Life
 - The time it takes for one half of the radioactive atoms present to decay.
- Radioactive contamination
 - Radioactive contamination occurs when radioactive material is uncontained and in an unwanted place. (There are certain places where radioactive material is intended to be).
 - Our goal is to prevent radioactive contamination.

Radiation Safety Training

TT WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 3

Ionizing radiation

- Ionizing radiation is energy (particles or rays) emitted from radioactive atoms, and some devices, that can cause ionization.
- Examples of devices that emit ionizing radiation are X-ray machines, accelerators, and fluoroscopes.
 - Exposure to ionizing radiation, without exposure to radioactive material, will not result in contamination of the worker.

Radiation Safety Training

🎹 WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 4

Non-ionizing radiation

- Electromagnetic radiation that doesn't have enough energy to ionize an atom is called "non-ionizing radiation."
- Examples of non-ionizing radiation are radar waves, microwaves, and visible light.

Radiation Safety Training

TT WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 5

- The four basic types of ionizing radiation of concern at Western Kentucky University are
 - alpha particles
 - beta particles
 - gamma or X rays
 - neutrons

Four Basic Types of Ionizing Radiation

Radiation Safety Training

WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 6

- Deposits a large amount of energy in a short distance of travel.
 - Can only penetrate very short
 - Range in air is about 1-2 inches.
- Shielding
 - Most alpha particles are stopped by a few centimeters of air, a sheet of paper, or the dead layer (outer layer) of skin.
- Biological hazards
 - Alpha particles are not considered an external radiation hazard because they are easily stopped by the dead layer of skin.

Alpha Particles

Radiation Safety Training

T WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 7

- Range
 - Beta particles have a limited penetrating ability.
 - The range in air of beta particles depends on the energy of the beta particle and can be as short and an inch (³H) to as far a 20 feet. (³²P or ⁹⁰Sr).
- Shielding
 - Beta particles are typically shielded by plastic, glass, or safety glasses.
- Biological hazards
 - Can be an internal hazard if ingested or inhaled,
 - Potentially hazardous to the skin and eyes.
 - P-32 is commonly used at WKU; this high energy beta emitter (1.7 MeV) can result in radiation exposure to the whole body.

Beta Particles

Radiation Safety Training

WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 8

- Gamma rays are very similar to X rays.
- Range
 - Very high penetrating ability.
 - The range in air is very far. It will easily go several hundred feet.
- Shielding
 - Best shielded by very dense materials, such as lead.
 - Water or concrete, although not as effective as the same thickness as lead, are also commonly used, especially if the thickness of shielding is not limiting.
- Biological hazards
 - Gamma/X-ray radiation can result in radiation exposure to the whole body.

Gamma rays/X-rays

Radiation Safety Training

WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 9

- Range
 - Neutrons have a relatively high penetrating ability and are difficult to stop.
 - The range in air is very far. Like gamma rays, they can easily travel several hundred feet in air.
- Shielding
 - Neutron radiation is best shielded by materials with a high hydrogen content such as water, concrete, or plastic.
- Biological hazards
 - Neutrons are a whole body hazard due to their high penetrating ability.
- Sources
 - Contact the RSO if you have questions about the specific neutron emitting isotopes or machines your lab possesses.

Radiation Safety Training

TT WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 10

- Rad (Radiation absorbed dose)
 - A unit for measuring absorbed dose in any material.
 - Is defined for any material.
 - Applies to all types of radiation.
- Does not take into account the potential effect that different types of radiation have on the body.
- Rem (Roentgen equivalent man)
 - Is the most commonly used unit for measuring dose equivalence
 - Takes into account the energy absorbed (dose) and the biological effect on the body due to the different types of radiation.
 - 1 rad = 1000 millirad (mrad) = 1 rem = 1000 mrem

Units of Measure for Radiation

Radiation Safety Training

TT WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 11

- The Quality Factor (QF) is used as a multiplier to reflect the relative amount of biological damage caused by the same amount of energy deposited in cells by the different types of ionizing radiation. Rem = rad x QF.
 - Quality Factors:
 - alpha = 20
 - beta = 1
 - gamma/x-ray = 1
 - neutron = 2-11 (depending on the energy)

Units of Measure for Radiation

Radiation Safety Training

TT WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 12

- Radiation dose rate is the dose per time.
- Example:
 - Radiation dose rate = dose/time.
 - Radiation dose equivalent rate = mrem/hr.
 - Radiation absorbed dose rate = mrad/hr.

Radiation Dose and Dose Rate

Radiation Safety Training

WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 13

Radiological Worker Training, DOE Handbook, DOE-HDBK-1130-98, October 1998, Reaffirmation with Errata May 2004, Change Notice No. 1, February 2005.

Radiation Safety Training

WESTERN KENTUCKY UNIVERSITY

Radiological Fundamentals Module 1, Page 14