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1. Introduction

One of the most perplexing phenomena in the study of vision is the ability
of observers to determine an object's 3-dimensional structure from patterns of
light that project onto the retina. Indeed, were it not for the facts of our day-to-
day experience, it would be tempting to conclude that the perception of
3-dimensional form is computationally impossible, since the properties of optical
stimulation have so little in common with properties of real objects encountered
in nature. Whereas real objects exist in 3-dimensional space and are composed of
tangible substances such as earth, metal, or flesh, an optical image of an object is
confined to a 2-dimensional projection surface and consists of nothing more than
flickering patterns of light. Nevertheless, for many animals including humans,
these seemingly uninterpretable patterns of light are the primary source of
sensory information about the layout of objects and surfaces in the surrounding
environment.

Previous research has identified several different properties of optical
structure from which an object's 3-dimensional form can be perceptually specified.
Some of these properties -- the so-called pictorial depth cues -- are available
within individual static images. Consider, for example, the patterns of image
contours presented in Figure 1. The upper left panel of this figure shows a
pattern of converging line segments, which is perceived as a ground plane
receding in depth; the upper right panel shows a pattern of connectivity among
parallel contours, which is perceived as two solid rectangular objects, one resting
on top of the other; and the lower panel shows a pattern of curved contours, which
is perceived as a smooth surface. Other perceptually informative properties of
individual images that have been studied extensively include gradients of
shading or texture (e.g., see Todd and Mingolla, 1983; Mingolla and Todd, 1986;
Todd and Akerstrom, 1987).

Additional information about an object's 3-dimensional form can also be
provided by the systematic transformations among a sequence of multiple images.
For example, when an observer moves within a cluttered environment the texture
elements on visible surfaces move projectively at different velocities (i.e., motion
parallax) due to their different depths relative to the observer. Binocular
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parallax occurs whenever an observer views an object with both eyes
simultaneously. Because each eye views the world from a slightly different
vantage point, texture elements at different depths project to different relative
positions (binocular disparity) within each retinal image. Other -optical
transformations that can provide information about 3-dimensional form include
accretions or deletions of texture when one surface occludes another, or the
deformations of shading that occur when an object moves relative to the direction
of illumination.
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Figure 1. Three examples of how static configurations of image contours can
provide perceptually compelling information about an object's 3-dimensional
structure.
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All of these different properties of optical structure have been studied
extensively within controlled laboratory experiments, and the results show clearly
that they can all produce compelling perceptions of 3-dimensional form. What is
not clear, however, is how these perceptions relate to the actual structure of the
physical environment. The mere fact that observers are able to perceive
3-dimensional form does not reveal the specific parameters by which visible
objects are perceptually represented. Thus, in an effort to shed new light on this
issue, the present article will examine some alternative geometric frameworks for
representing shape, and it will review the available psychophysical evidence to
see which of these frameworks are most similar to the properties of human
perception.

2. What is shape ?

As it has evolved from ancient times, the concept of space in modern
science has become increasingly abstract and farther removed from our intuitive
beliefs derived from experience. In speculating about the properties of physical
space, for example, some theorists have argued that the fabric of space can be
deformed by the presence of large masses, and that these deformations are
responsible for the phenomenon of gravity. Imagine taking a glass marble and
rolling it across a smooth surface. When the rolling marble encounters a hill or a
valley, its movements will be constrained by the overall shape of the surrounding
terrain. In an analogous fashion, the large mass of the sun deforms its
surrounding space, which constrains the earth to orbit in an elliptical trajectory.

The nature of visual space is at present not adequately known. We
perceive a compelling 3-dimensional environment filled with many differently-
shaped objects, despite the obvious fact that the spatio-temporal optical patterns
that give rise to this perception are only 2-dimensional. A more complete
understanding of the nature of visual space is critical for the study of solid shape,
because the structure of this space determines the measurable properties of
objects embedded within it. Let us now consider some of the possible alternatives.

Throughout the literature on human perception, classical euclidean
geometry is by far the most common framework for describing the structure of the
environment. The defining characteristic of a euclidean space is that it possesses
a distance metric, such that the absolute distance between two points a and b
having Cartesian coordinates (al, a,, aa) and {bl, b2, b,) s
\f(al-bl)2 +(a,-b)* + (a;by)”. Since a euclidean space is isotropic, we can
measure distances between any pair of arbitrary points. Thus, if human
observers are able to perceive the euclidean metric structure of the environment,
then they ought to be able to accurately compare distances (or angles) of line
segments oriented in different directions according to the pythagorean theorem.

It is important to recognize that the euclidean distance metric is not
universally applicable in all contexts. Consider, for example, the structure of a
simple triangle. One of the fundamental theorems of euclidean geometry is that
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the sum of the three angles of a triangle must be exactly 180 degrees. This will
always be true if the triangle is drawn on a flat surface. However, if a triangle is
drawn on a sphere, then the sum of its three angles will always be greater than
180 degrees, and if a triangle is drawn on a saddle then the sum of its angles will
always be less than 180 degrees. Beginning in the nineteenth century, results
such as these led Gauss and others to conclude that the constraints imposed by
euclidean geometry might not always be appropriate for describing the structure
of the environment. In order to deal with curved surfaces, they discovered, it is
necessary to adopt alternative noneuclidean distance metrics for which the
Pythagorean theorem is invalid.

It is also possible to define even more abstract spaces. For example, in
affine geometry the distance metric is allowed to vary in different directions -- i.e.,
it is anisotremic. Because distance intervals can only be compared when they are
in the same direction, one cannot determine either distances or angles between
arbitrary points located within an affine space. Surprisingly, however, this
limitation does not seriously handicap the study of shape. As described by
Snapper and Troyer (1971) : "affine geometry is what remains after practically all
ability to measure length, area, angles, etc., has been removed from Euclidean
geometry. One might think that affine geometry is a poverty-stricken subject.
On the contrary, affine geometry is quite rich”.

Other types of representation are possible which have no distance metric at
all. For example, many of the important properties of a smoothly curved surface
can be adequately described by the depth order relations among neighboring
points, without including any information about depth magnitudes. Objects can
also be described by their patterns of connectivity, or as a collection of
categorically distinct parts.

There are many possible geometries for describing an object's
3-dimensional structure. As was first noticed by the German mathematician
Felix Klein in 1872, these geometries can be organized in a hierarchy, based on
the different transformations they allow, and the structural properties that
remain invariant under those transformations. Euclidean geometry allows
arbitrary translations and rotations, which preserve the distance between any
pair of points on an object. Affine geometry allows arbitrary stretching
transformations, which do not leave distance invariant, but do preserve a wide
variety of other properties, such as the sign of Gaussian curvature of a surface or
the parallelism of a pair of line segments. Similarly, with more general projective
transformations, a conic section will remain a conic section and a collinear set of
points will remain collinear. Even when an object is subjected to arbitrary
smooth deformations, some of its properties such as the pattern of connectivity
among neighboring points will still remain invariant.

3. The geometry of human vision

Which of these geometries is most relevant to the visual perception of
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3-dimensional form? In the discussion that follows we shall consider several
possible aspects of an object's structure, and we shall review the available
psychophysical evidence about their relative perceptual salience.

A. Euclidean Structure

In order to obtain an accurate euclidean representation of the environment,
it would first be necessary to somehow determine the relative depths of every
visible point from the available patterns of optical stimulation (e.g., see Marr and
Poggio, 1979; Marr, 1982). As we shall see, some types of optical information are
theoretically sufficient to obtain an accurate depth map while others are not.

Consider, for example, the phenomenon of stereopsis. It is well known that
human observers can perceive vivid and compelling 3-dimensional shapes defined
by variations in binocular disparity. It is important to keep in mind, however,
that it is not possible, even in principle, to uniquely determine euclidean
structure from binocular optical patterns based solely on variations in horizontal
disparity. In order to recover the 3-dimensional distance between a pair of points
on the basis of their disparity, one must have accurate information about the
distance to the observer's fixation point. This information about viewing distance
could come from some optical source other than binocular horizontal disparity or
from some non-optical, extra-retinal source like the state of convergence of the
two eyes.

Figure 2 illustrates Panum's limiting case, the simplest possible
stereoscopic situation. An observer fixates F and views two points separated in
depth. In the left eye, the two points project to the same retinal location; while in
the right eye, they project to different retinal locations (disparity) as a result of
the points' differing depths. Since the binocular disparity & is an angle, the
actual depth difference D cannot be determined on the basis of the optical
patterns alone. In order to recover D, one must know the viewing distance from
the observer to F. The key point is that there is no one-to-one relationship
between horizontal retinal disparity and depth. Any given disparity & could
result from any physical depth difference depending on the viewing distance. In
our example, both viewing situations have the same disparity 3, yet the physical
depth interval corresponding to that disparity is much larger for the viewing
situation illustrated in the left half of the figure due to the larger viewing
distance.

Longuet-Higgins (1982) and Mayhew and Longuet-Higgins (1982) have
shown that the vertical disparity that exists for all environmental points lying off
the horizontal meridian could be used to obtain the necessary information about
viewing distance. However, Fox, Cormack, and Norman (1987) manipulated the
magnitude of vertical disparity within line-element stereograms and found that
variations in vertical disparity had no effect on the perceived depth intervals
resulting from a given horizontal disparity.
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The convergence angle of the two eyes could also be used as a possible
source of information about viewing distance. Although Foley (1980) has shown
that manipulations of convergence can have measurable effects on
stereoscopically defined figures, it is important to keep in mind that the eyes are
essentially parallel for viewing distances over two meters while stereopsis occurs
over much larger viewing distances involving hundreds of meters (Cormack,
1984). Given that a pattern of binocular disparities covaries with both an object's
physical form and its position relative to an observer, stereopsis appears to be ill-
suited for delivering information about euclidean relations in 3-dimensional
space. Indeed, the invariance of perceived binocular shape under changes in
viewing position and distance led Julesz (1971, p. 290) to conclude that : "for
stereopsis one must generalize the metric of space from a rigid Euclidean one to a
less rigid affine or topological space” (see also Luneberg, 1947, 1950).
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Figure 2. A schematic illustration of Panum's limiting case used to show that any
given binocular disparity & can be produced by any physical depth interval
depending on the observer's viewing distance to the fixation point.
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Although perception of 3-dimensional form from stereopsis may be
inherently limited, perhaps there are other sources of information that are
potentially more reliable. Of all the different aspects of optical stimulation that
are known to influence observers' perceptions of 3-dimensional form, motion is
the one that is most likely to provide perceptually useful information about
euclidean metric structure. During the past decade, there have been numerous
theoretical analyses of how it is possible to compute an object's structure from
motion, provided that certain minimal conditions are satisfied. Most of these
analyses are designed to be used with a discrete sequence of orthographic
projections of an arbitrary configuration of points rotating in depth about an
arbitrary axis. Within this context, it can be proven mathematically that there
will always be a unique rigid interpretation for any apparent motion sequence
that contains at least three views of four or more noncoplanar points (see Bennett,
Hoffman, Nicola, and Prakash, 1989; Huang and Lee, 1989; Ullman, 1979).
These conditions are both necessary and sufficient. For arbitrary configurations
that contain fewer than three views or fewer than four points, the 3-dimensional
structure will be mathematically ambiguous with an infinity of possible rigid
interpretations.

During the past several years, however, there has been a growing amount
of evidence that these theoretical limits may have surprisingly little relevance to
actual human vision. Of particular importance in this regard are the recent
findings from several different laboratories that 2-frame apparent motion
sequences presented in alternation provide sufficient information to obtain
compelling kinetic depth effects and to accurately discriminate between different
3-dimensional structures (Braunstein, Hoffman, and Pollick, 1990; Braunstein,
Hoffman, Shapiro, Andersen, and Bennett, 1987; Doner, Lappin, and Perfetto,
1984; Lappin, Doner, and Kottas, 1980; Todd, Akerstrom, Reichel and Hayes,
1988; Todd and Bressan, 1990). Similar results can also be obtained using longer
length sequences of scintillating random dot surfaces for which no dot is allowed
to survive for more than two successive frames (Dosher, Landy, and Sperling,
1990; Norman, 1990; Todd, 1985).

Since euclidean depths and orientations cannot in principle be determined
from 2-frame apparent motion sequences under orthographic projection, and
human observers can perform accurately on tasks where the motion sequences
are limited to two views, it seems reasonable to conclude that observers
performance on these tasks cannot be based on a computational analysis of
euclidean structure from motion. It would appear from this finding that
observers are able to make use of other, more abstract forms of perceptual
representation when presented with minimal amounts of information, but are
they capable of perceiving euclidean structure when sufficient information is
available to support such an analysis? It is important to keep in mind when
considering this issue that the defining characteristic of euclidean structure that
distinguishes it from other possible geometries is the existence of an isotropic
distance metric. Thus, if there are any conditions in which observers can
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accurately diseriminate lengths and angles of line segments oriented in different
directions, then, by definition, their knowledge of 3-dimensional structure in
those conditions must be euclidean.

Surprisingly, even though this is the defining characteristic of euclidean
geometry, there have been relatively few experiments in which observers were
required to make explicit judgements about isotropic metric structure. One such
experiment has recently been performed by Todd and Bressan (1990). Observers
in their study were asked to discriminate the relative 3-dimensional lengths or
angles between moving line segments, whose relative orientations were carefully
controlled so that above chance performance could not be achieved based solely on
the projected lengths or projected angles depicted in each display. Performance
on these tasks was extremely poor relative to other types of sensory
discrimination. Weber fractions for the length and angle judgements were 25 and
50 percent, respectively. Moreover, although the overall level of performance was
above chance, there were no significant improvements as the number of distinct
frames in an apparent motion sequence was increased from two to eight. Thus,
whatever information was used for performing these tasks, it was fully available
within 2-frame displays for which an accurate analysis of euclidean metric
structure was computationally impossible.

B. Affine Structure

If not euclidean structure, then what can observers perceive from the
minimal amounts of information provided by 2-frame apparent motion sequences
or stereograms under orthographic projection? Recent analyses by Koenderink
and van Doorn (1991) and Todd and Bressan (1990) have shown that this
information is mathematically sufficient to determine an object's structure up to
an affine stretching transformation along the line of sight (see also Bennett et al,
1989). Although an object's euclidean structure cannot be uniquely specified from
such minimal amounts of information, it is nonetheless severely constrained.

There are a wide variety of object properties that can be reliably detected
based solely on an analysis of affine structure. For example, it is possible with
this analysis to determine the metric length ratio between any pair of parallel
line segments; to perform various nominal categorizations, such as distinguishing
between planar and nonplanar configurations; and to accurately discriminate
structural differences between any pair of objects that cannot be made congruent
by an affine stretching transformation along the line of sight. It is also
interesting to note in this regard that an analysis of affine structure from 2-frame
displays is sufficiently powerful to perform most of the existing psychophysical
tasks that have been employed previously to study observers' perceptions of
structure from motion or stereopsis, including judgements of rigidity, or
coherence, discriminations of rigid from nonrigid motion, judgements of ordinal
depth relations, and the discrimination or identification of complex 3-dimensional
forms.
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In a recent series of experiments, Todd and Bressan (1990) and Todd and
Norman (1991) have examined the accuracy of observer's judgements for several
different aspects of a moving object's 3-dimensional form. The results reveal that
performance is quite poor for tasks that require an analysis of euclidean metric
structure, but that observers' judgements can be extremely accurate for tasks that
are mathematically possible based on an analysis of affine structure. In addition,
there is little or no improvement on any of these tasks as the number of distinct
frames in an apparent motion sequence is increased beyond two.

It is important to keep in mind that a 2-frame apparent motion sequence or
stereogram under orthographic projection can only provide sufficient information
to determine an object's structure up to an affine stretching transformation along
the line of sight. Thus, this latter finding suggests a surprising prediction :
Consider an extended apparent motion sequence of an object rotating in depth
that is stretched or compressed along the line of sight at each frame transition.
The cumulative effects of these stretching transformations would be carried along
by the rotation, resulting in potentially large deformations of the object's
structure. However, if the human visual system is restricted to an analysis of
first order displacements between 2-frame sequences, as we have suggested
above, then this particular type of deformation should be perceptually
undetectable, since every successive 2-frame sequence would have a possible rigid
interpretation.

This prediction has been confirmed empirically in a recent series of
experiments by Norman and Todd (1991). When a rotating object is stretched or
compressed along the line of sight, it appears indistinguishable from a perfectly
rigid object whose rate of rotation is accelerated or decelerated. Norman and
Todd have also performed computer simulations to demonstrate that these
different transformations can be distinguished by analyses of euclidean structure
from motion that are able to integrate information over three or more views. A
typical pattern of results from one such algorithm by Hoffman and Bennett (1986)
1s shown in Figure 3. From the projected positions of a set of points rotating in
depth about a fixed axis in the image plane, this algorithm computes the radius of
each point relative to the axis of rotation. The upper curve in Figure 3 shows the
computed radius over a 100 frame sequence for a single point within a rigid
configuration whose angular velocity varies sinusoidally over time. The computed
radius in this case remains perfectly constant, indicating that the object's motion
is rigid. The lower curve in this figure shows the output from the same algorithm
for a nonrigid configuration that rotates at a constant velocity, but is sinusoidally
stretched along the line of sight as it rotates. Note in this case that the computed
radius varies over time indicating the object's motion is nonrigid. It is clear that
these different transformations could easily be distinguished using existing
algorithms for computing euclidean structure from motion. Thus, the fact that
they are perceptually identical provides especially strong evidence that human
observers may be restricted to a more abstract analysis of affine structure.



102 Chapter 4, J. Farley Norman and James T. Todd

~ 6+
£
N
2 Rigid
5 a4l
2
&
@ . .
S 2+ Nonrigid
«
2
§
- 0 t t t
0 1 2 3

Time (sec.)

Figure 3. The distance of two points from their axes of rotation as a function of
time. Each trajectory was computed from the optical projection of a moving
configuration using an algorithm developed by Hoffman and Bennett (1986). The
point represented by the upper curve was part of a rigid configuration, whose
angular velocity varied sinusoidally over time. The point represented by the
lower curve, in contrast, was part of a nonrigid configuration that was stretched
sinusoidally along the line of sight as it rotated. Although the differences
between these two trajectories are easily detectable using an analysis of euclidean
structure from motion, they cannot be detected by actual human observers.

C. Ordinal Structure

Whereas an affine representation of 3-dimensional form retains some
rudimentary information about ratiometric distances in any given direction, it is
also possible to describe many of the essential properties of an object's structure
without any distance metric at all. Gibson (1950) argued that much of our
perceptual awareness of the environment is based on simple order relations that
can be described in terms of "greater than" or "less than". More recently, Todd
and Reichel (1989) have suggested that an observer's knowledge of smoothly
curved surfaces can often involve a form of ordinal representation, in which
neighboring surface regions are labeled in terms of which region is closer to the
point of observation without specifying how much closer.

It is important to recognize that the order relations in this proposed
representation are only defined for adjacent regions within an arbitrarily small
neighborhood. This has some important consequences. Suppose, for example,
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that we wish to determine the ordinal depth relation between two visible surface
regions R, and R that are not locally adjacent to one another. Using an ordinal
representation, the relative depth of these regions can only be determined if there
is a continuous chain of intervening regions that are ordinally transitive (i.e., if
R] <R,<R,..<R, then R] < R ). If this restriction is violated (i.e., R1 <R, < R3
.. > R ), then the relative deptT]s of R, and Rn cannot be determined from an
ordinal representation without providing additional information. Todd and
Reichel (1989) have demonstrated psychophysically that ordinal transitivity is
important for the perception of smoothly curved surfaces. That is to say, when
observers are required to judge the relative depths of ordinally transitive surface
regions, their responses are more accurate and they have faster reaction times,
than when similar judgements are performed for ordinally intransitive surface

regions.
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Figure 4. The ordinal structure of any surface is completely determined by the
optical projections of its occlusion points and depth extrema. In this particular
example there are two occlusion points O, and O,, and three depth extrema El,
E,, and E,. Their corresponding optical projections in the image plane are labeled

Ol', OZ', E]', Ez', and ES', respectively.
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To better appreciate the precise nature of ordinal representations it is
useful to consider a planar cross-section of a smoothly curved surface as shown in
Figure 4. Note in the figure that there are two occlusion points O, and O,. It can
be demonstrated theoretically (see Koenderink and van Doorn, 1976, 1982) that
as we move from an occlusion point in an attached region, the ordinal depth of a
surface relative to the image plane must decrease monotonically until a depth
minimum is reached. Thus, occlusion contours provide potential information
about the ordinal structure of attached surface regions in their immediate local
neighborhood, and there is considerable evidence to suggest that human
observers rely heavily on this information for the visual perception of
3-dimensional form (see Reichel and Todd, 1990; Todd and Reichel, 1989). A
complete ordinal representation cannot be achieved, however, without also
identifying the depth extrema (i.e., the depth maxima and minima), which define
the boundaries of ordinal transitivity where a monotonic depth change switches
from positive to negative or vice versa. The optical projections of these depth
extrema together with those of the occlusion points are both necessary and
sufficient for visually specifying the complete ordinal structure of any surface
cross-section.

D. Topological Structure

Some aspects of an object's structure can be adequately characterized using
even more abstract representations, in which the concept of distance is
abandoned altogether. Consider the topological structure formed by the pattern
of connectivity among the vertices of a polyhedron or the neighborhood relations
among identifiable points on a continuous surface. If we allow objects to be
smoothly deformed without tearing by arbitrary combinations of bending and
stretching transformations, these connectivity and neighborhood relations will
remain invariant. Solid objects can be distinguished topologically by the number
of holes they contain. Within this framework, a doughnut and a coffee mug are
topologically equivalent because they have the same number of holes and can
therefore be deformed into one another without tearing. A doughnut and a
potato, on the other hand, are topologically different because they do not have the
same number of holes.

Is topological structure of any relevance to human perception? Consider
the sequence of projected silhouettes of an object rotating in 3-dimensional space
depicted in Figure 5. Note in the first frame of this sequence that the object's
silhouette is bounded by a single connected contour. Between frames two and
three, however, the pattern undergoes a qualitative change in which the
emergence of a hole causes the silhouette to be bounded by two different contours
that are not connected to one another. Once this hole is revealed, it provides
potentially useful information about the depicted object's 3-dimensional structure
-- i.e., if an object's silhouette contains a hole, then the object itself must also
contain a hole.
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1. 2. 3. 4, I
Figure 5. Four successive views of the projected silhouette of a rotating torus.

Note the catastrophe between views two and three, which indicate the presence of
a hole.

There have been several recent psychophysical experiments designed to
demonstrate the importance of topological structure in human vision. For
example, Chen (1982) has shown that topologically equivalent forms, such as a
filled circle and a filled triangle, are more difficult to discriminate at brief
exposure durations than are topologically different forms, such as a filled circle
and a circular annulus, whose bounding contours have identical shapes.
Topologically equivalent forms also produce stronger perceptions of apparent
motion when presented sequentially over time (Chen, 1985; Prazdny, 1986).
These findings provide strong evidence that human observers are indeed sensitive
to topological relations at a relatively early stage of visual processing.

E. Nominal or Categorical Structure

Another way of representing 3-dimensional form that does not require the
concept of distance is to decompose an object into a relatively small set of
categorically distinct parts. There have been several variations of this approach
described in the literature. For example, one possible strategy proposed by
Koenderink and van Doorn (1976, 1980, 1982) is to decompose a surface into
bounded regions of positive (elliptic), negative (hyperbolic), or zero (parabolic)
Gaussian curvature (see also Koenderink, 1984; Richards, Koenderink, and
Hoffman, 1987). These authors have demonstrated mathematically that the local
Gaussian curvature of a surface can be optically specified by certain types of
image features such as smooth occlusion contours and singular points within the
field of image intensities. Objects can also be divided into parts at loci of negative
minima along lines of principle curvature (Beusmans, Hoffman, and Bennett,
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1987; Hoffman and Richards, 1984) or by decomposing their boundaries into the
largest convex surface patches (Vaina and Zlateva, 1990).

With respect to the study of actual human perception, there is a growing
amount of evidence that certain types of object recognition may be primarily
dependent on part-based representations. Biederman (1987) has argued that
most objects in the environment can be adequately represented to achieve
recognition using a limited set of volumetric primitives, called geons, which are
connected to one another in simple combinations, in much the same way that
words can be composed from a relatively small alphabet of phonemes. The optical
information from which these geons are perceptually specified is assumed to be
based on easily measurable properties of image contours, such as the presence or
absence of curvature, parallelism or symmetry, and the cotermination of contours
at vertices. Biederman and his colleagues have conducted numerous empirical
studies of object recognition which have generally supported the psychophysical
validity of this analysis. The results have revealed that only two or three geons
are usually sufficient to allow rapid and accurate object recognition, and that
performance remains surprisingly unimpaired even when a test image is
systematically transformed by changing its scale, deleting a large portion of its
contours, or by rotating the depicted object in depth.

4. Discussion

Based on the available evidence, we believe it is the case that there is no
one type of visual representation that can adequately account for observers'
perceptions of 3-dimensional form. Consider, for example, the apparent
usefulness of part-based representations for object recognition. The primary
selling point for a nominal description of 3-dimensional structure is its stability
over changes in viewing position. When an object moves relative to the observer -
- even when the motion is not perfectly rigid as in a human gait -- the
decomposition of its structure into parts remains largely invariant. The primary
disadvantage of a nominal representation is its lack of precision. Part-based
descriptions are invariant over change, because they typically do not encode the
size, shape, or orientation of each part. This makes them incapable, however, of
describing any variations along these dimensions, unless they are supplemented
with some additional form of metric representation.

In some respects, the perceptual performance of human observers in
judging various aspects of an object's 3-dimensional form seems to have much in
common with the hierarchy of geometries proposed by Felix Klein. In a speech at
Erlangen University in 1872, Klein argued that different geometries can be
stratified by the properties of objects that are preserved by different types of
geometric transformations. There is a growing amount of evidence to suggest
that human vision involves a similar type of stratification in which the most
perceptually salient aspects of an object's structure are those that remain
invariant over the largest number of possible transformations.
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Such findings indicate that visual knowledge of 3-dimensional form may
exist at multiple levels of description, and that the specific type of representation
required for any given task is dependent on the particular judgement an observer
is asked to perform. The most difficult tasks are those that require a knowledge
of metric structure. Ordinal judgements, in contrast, are performed significantly
faster and significantly more accurately (Todd and Reichel, 1989), and those
measures of performance can be improved still further for tasks such as object
recognition involving topological or nominal judgements (e.g., see Biederman,
1987).

Ironically, although many theorists assume that the primary goal of human
perception is to achieve an accurate euclidean representation of visible objects in
the surrounding environment, there are good reasons to question whether human
observers are able to perceive euclidean metric structure under any
circumstances. For example, recent research by Todd and Bressan (1990) and
Todd and Norman (1991) has shown that most tasks employed to measure
observers perceptions of 3-dimensional form can be performed reliably based
solely on an analysis of affine structure, and that tasks which specifically require
a knowledge of euclidean structure typically result in dramatically impaired
performance. All of this suggests that the geometry of perceived 3-dimensional
form may be much more abstract than is generally taken for granted, and that
our common intuitions about the importance of metric structure may have
surprisingly little relevance to the processes of human perception.
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